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Abstract

Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation 

by capturing the gas within the overlying fractured strata before it enters the work environment. 

Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline 

behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical 

gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and 

GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates 

monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to 

determine parameters of decline rates. Surface elevation showed the most influence on methane 

production from GGVs and thus was used to investigate its relation with DCA parameters using 

correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential 

Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters 

as the primary variables. The primary DCA variables were effective percentage decline rate, rate 

at production start, rate at the beginning of forecast period, and production end duration. Co-

simulation results were presented to visualize decline parameters at an area-wide scale. Wells 

located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their 

rate declines compared to those at higher elevations. These results were used to calculate drainage 

radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by 

pressure transient tests.
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1. Introduction

Drilling gob gas ventholes (GGVs) in longwall mining panels is a common technique to 

control methane emissions, allowing for the capture of methane within the overlying 

fractured strata before it enters the work environment during mining. The usual practice is to 

drill the GGVs prior to mining and locate a slotted casing in the zone that is expected to 

fracture (fractured zone). As mining advances under the venthole, the strata that surround 

the well deform and establish preferential pathways for the released methane, mostly from 

the coal seams within the fractured zone, to flow towards the ventholes [1]. The properties 

of fractured zones, mainly permeability, are determined through conventional pressure- and 

rate-transient well test analyses techniques that are used systematically and routinely for oil 

and gas [2–6]. Results showed that permeabilities of bedding plane separations can be as 

high as 150 Darcies, with average permeabilities (including fractures and intact formations) 

within the slotted casing interval of GGVs varying between 1 Darcy and 10 Darcies [7–9].

GGVs are equipped with exhausters on the surface to provide negative pressure to produce 

methane from highly permeable fractured zones with a rate and concentration depending on 

various additional factors besides permeability [10–11]. The production life-span of GGVs 

may be long or short, depending on mining, borehole drilling, and location as well as 

operating conditions, but usually follows a declining trend with time [8] until the exhausters 

are shut down as a safety measure against explosion risk, when the methane concentration in 

the produced gas decreases to approximately 25%.

It is difficult to predict production performance of GGVs due to the involvement of multiple 

factors [10,12]. In addition to complexities given in these studies, boreholes may deform 

under mining stresses and strata displacements [13–15], making production predictions even 

more difficult. Studies presented in [7,12] do not take borehole stability issues into account 

while predicting GGV performance. However, Karacan [10] presented a sensitivity analysis 

of variables on total flow rate and methane percentage of gas produced from GGVs. The 

sensitivity analyses showed that, when considering the overall performance of GGVs for 

methane production rate, the most important variables were 1, whether or not face is 

advancing, 2, surface elevation of the venthole (above sea level), 3, overburden, 4, casing 

diameter, 5, distance of the venthole to the tailgate, and 6, distance of venthole to panel start.

Multiple factors studied in [10] and then improved in [11] were formulated as a multi-layer-

perceptron (MLP) type neural network to predict GGV production performance. This 

module is part of MCP 2.0-Methane Control and Prediction software, v.2 [16] for prediction 

and sensitivity analyses purposes. Version 1.3 of this software is briefly discussed [17].

Despite the improvements for understanding the effects of various factors on GGV 

production and for predicting GGV performance, there are GGVs that perform much better 

or worse than expected in terms of methane production rate and production longevity. 

Although these unexpected production behaviors may be due to borehole stability issues, as 

mentioned before, they can also be related to spatial location of the borehole and how it 

interacts with other important production-influencing factors at that particular position. In 

other words, if there is a spatial correlation or stochastic dependency between borehole 
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location, its rate transient, and other potentially influencing factors, the analyses should 

involve the geographical location of the boreholes, necessitating geostatistical methods.

Geostatistical methods, some of which are described in detail in [18–22], have wide 

applications in geology, environmental studies, mining research, and petroleum engineering 

[23–28]. More recently, Olea et al. [29] have developed a formulation of a correlated 

variables methodology and co-simulation for assessment of gas resources in Woodford shale 

play, Arkoma basin, in eastern Oklahoma.

The aim of this paper is to explore the possibility of modeling the attributes of decline curve 

analyses (DCA) conducted on gob gas ventholes by taking into account borehole locations 

and potential correlations between surface elevations at the wellheads. Geostatistical 

stochastic co-simulation methods were used to map the distribution of decline curve 

attributes. In addition, cell-based DCA parameters were interpreted with the GIP in the 

fractured zone to estimate radii of drainage area of GGVs.

2. Site location and description of area in relation to correlations with gob 

gas venthole production

The longwall mining site studied in this paper is in the Pittsburgh coal, Monongahela Group, 

southwestern Pennsylvania. The Monongahela Group includes sandstone, siltstone, shale 

and commercial coal beds and occurs from the base of the Pittsburgh coal bed to the base of 

the Waynesburg coal bed. Thickness within the general study area ranges from 270 to 400 ft. 

The Pittsburgh coal seam is unusually continuous and covers more than 5000 square miles 

[30], making longwall mining technique highly suitable in this region.

Mining the Pittsburgh seam creates a gas emission zone that extends from the Pittsburgh 

Rider to Waynesburg coal beds (Fig. 1), spanning to a height of ~350 ft [31]. However, in 

the gas emission zone, Sewickley, Uniontown and Waynesburg coal beds are the main coal 

seams that occur within the fractured zone (~ 80–350 ft from the top of the Pittsburgh seam). 

During mining, these coal seams are fractured vertically and horizontally and their methane 

is liberated into the fracture system. The methane emissions from these coals are believed to 

be the main source of gas from the fractured zone, which is controlled by drilling GGVs 

from the surface in advance of mining. A simplified stratigraphy of the studied region, a 

schematic of a GGV and its drilling distance, the specific panel area where modeling was 

conducted, and the monitored GGV locations are shown in Fig. 1.

The GGVs shown in red in Fig. 1 were monitored for flowrates, methane percentage in 

produced gas, and pressures at the well head. GGVs shown in blue marks were equipped 

with downhole transducers by the field personnel to monitor the change in head of water 

initially filled in the boreholes. This information was used to calculate hydraulic 

conductivities as a function of face location. Data collected at the surface for flow and 

pressures were later used for decline curve analyses.

In southwest Pennsylvania, the topography consists of frequent hills and valleys, which 

control underground fracture networks, flow of groundwater, and the presence of gas. 
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Fractures are usually within the valleys and are generally stress-relief fractures that were 

generated during erosional events [32]. Fracture patterns are vertical, parallel to the valleys 

and situated in valley floors.

Wyrick and Borchers [33] reported that groundwater flow associated with stress relief 

fractures occurs in the valley bottoms and valley sides. Therefore, wells in the valleys are 

more likely to produce high water yields. This fracturing is expected to diminish beneath the 

adjacent hills, thereby limiting the effective areal extent and yield of aquifers [32]. 

Subsidence caused by longwall mining results in tension and compression of the near-

surface zone, increasing or decreasing the fracture transmissibility, especially in valley 

bottoms, suggesting that GGVs drilled in the valleys may be more productive [33]. Based on 

an earlier integrated study evaluating hydraulic properties of underground strata and their 

potential responses to longwall mining, Karacan and Goodman [34] concluded that GGVs 

drilled in the valleys might be more productive than those drilled on hilltops. They also 

observed that the borehole location affected fracturing during dynamic subsidence in such a 

way that hilltop GGVs seemed to fracture earlier than valley-bottom wells. However, the 

permeability of the fractures at the hilltop wells was less compared to that of valley-bottom 

wells due to greater overburden thickness.

Wells at higher elevations, and thus with greater overburden thickness for a nearly flat coal 

bed such as the Pittsburgh seam, usually cause lower hydraulic conductivities and 

potentially less effective GGVs as opposed to shallow overburden wells. Thus, less 

overburden and lower surface elevations correlate better with GGV production. These 

observations and monitoring results are in agreement with Fig. 1 in terms of the influence of 

surface elevation on methane production from GGVs, and are the basis for selecting surface 

elevation as the secondary variable, as discussed in forthcoming sections.

3. Decline curve analyses of gob gas venthole data

3.1. Production data and analyses methodology

Decline curve analysis is a rate transient test procedure used for analyzing declining 

production rates and forecasting future performance of wells. In this paper, Fekete’s rate 

transient analysis (RTA) [35] software was used to analyze declining GGV production 

performances using both traditional decline approaches and Fetkovich type curves.

In decline curve analysis, it is implicitly assumed that the factors causing the historical 

decline continue unchanged during the forecast period. These factors include both reservoir 

conditions and operating conditions of the borehole. As long as these conditions do not 

change, the trend in decline can be analyzed and extrapolated to forecast future well 

performance [35,36]. This implicit assumption can be especially valid for gob reservoirs 

after the mining face passes the GGV location by at least several hundreds of feet or after 

completion of the panel. At these stages, caving and subsidence are complete at a particular 

GGV location, and no further major reservoir changes are expected. Under constant 

percentage or exponential decline conditions, plots of log-rate vs. time and rate vs. 

cumulative production should both result in straight lines from which the decline rate can be 

determined.
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An example of traditional DCA with fitted data of GGV-1 shown in Fig. 1 is given in Fig. 2. 

This figure shows the GGV-1 production data analyzed with an exponential decline curve 

using gas rate vs. time and gas rate vs. cumulative production plots. Some important data 

that can be drawn from these analyses relating to production and forecast intervals, as well 

as their locations, are shown schematically in Fig. 3. These parameters and their acronyms, 

shown in Fig. 3 caption, will be used as primary variables in co-simulations and will be 

referred to frequently in this paper.

The relationship of various parameters in exponential decline analysis are given below for 

decline coefficient and cumulative production between two time intervals, respectively, 

from the acronyms used in Fig. 3 and its caption:

Cumulative productions at different production times can be obtained by changing the FC to 

the desired time in Eq. (2).

3.2. Results of production decline analyses of GGVs

Table 1 shows the descriptive statistics of the DCA results of methane production data. The 

DCA allowed for the determination of eight attributes derived from the production of 10 

GGVs. These results show that percentage decline of the GGVs ranges from 47 to 100%/

year, with a mean of 78%/year. Table 1 further shows that the rate of methane production at 

the start of the GGVs’ production life, just after interception with longwall face, can vary 

between low values (~2 Mscf/day) and higher ones (336Mscf/ day). However, the 

production can cease at rates between 2 Mscf/ day and 217 Mscf/day (rate at forecast start 

period) and the GGVs can be short-lived (23 days) or longer (348.3 days), as observed from 

forecast-start time. Depending on their production characteristics, GGVs can capture 

cumulative methane between 3 MMscf and 102 MMscf, out of expected ultimate recovery 

(EUR) values ranging from 5 MMscf to 172 MMscf. These values correspond to a methane 

capture efficiency varying from ~2% to ~60% considering only the minimum and 

maximums of EURs. Thus, there are significant differences among the performance of the 

GGVs that were drilled in this area.

Ten observations for each DCA attribute are too few to establish a meaningful histogram for 

assessing the distributions of the DCA parameters across the study area and for selecting 

which ones could be used as primary variables.

4. Surface elevation data and modeling of gas-in-place in fractured zone

The mining district modeled in this work (Fig. 1) hosted Pittsburgh seam panels 1250 ft 

wide initially (the first two panels), with wider panels (1450 ft) starting from the 3rd panel. 
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Panel lengths were generally 12,000–13,000 ft in length. The dimensions of the area shown 

in Fig. 1 are 8624 ft in the y-direction (Northing) and 17,325 ft in the x-direction (Easting). 

In this district, overburden depths ranged between 700 and 1000 ft. This area was modeled 

in a 100 × 50 (Easting-Northing) Cartesian grid in which each cell was 175 ft in the x-

direction and 176 ft in the y-direction.

Surface elevation of the study area was obtained from U.S. Geological Survey seamless data 

warehouse [37] digitally and used as the secondary variable. The original digital resolution 

of the surface elevation map of the study area was 30 ft × 30 ft as it was extracted from the 

database. However, in order for it to match exactly to the grid model of the study area and to 

the GGV locations, the high-resolution data was scaled up to the number of cells and to the 

cell dimensions of the model grid using averaging with bi-linear interpolation. Thus, the 

final surface elevation map was the same as the above. Fig. 4 shows the up-scaled map, 

which was generated for use in GIP calculations and as the secondary variable in co-

simulations.

Fig. 5 shows the histogram of surface elevation data in Fig. 6. Basic statistics in this 

histogram, based on the values of 5000 cells, gives a minimum elevation of 932.3 ft, a 

maximum elevation of 1384.5 ft, a mean elevation of 1083.6 ft, and a standard deviation of 

87.9 ft.

The data used in geostatistical modeling of gas-in-place (GIP) were obtained from 63 

vertical exploration boreholes drilled over the mining area shown in Fig. 6. Because the top 

of the fractured zone for these mines was 350 ft from the top of the Pittsburgh coal [31], the 

data beyond this interval were excluded from further analyses. For each coal seam of interest 

in the fractured zone (Sewickley, Uniontown and Waynesburg seams), two attributes were 

determined at the spatial locations of each of the exploration boreholes for geostatistical 

modeling of GIP: overburden depth and coal thickness. Overburden depths were calculated 

by subtracting the sea-level elevation of each of the coal seams from the surface elevation 

data at those particular locations. Results of univariate statistical analyses of coal seam 

attributes are given in Table 2.

GIP simulations, whose modeling and computational procedure was developed and 

documented in detail for a different field in an earlier paper [38] and will not be repeated 

here for this district, were still pursued as an independent attribute. The univariate data given 

in Table 2 and the spatial distributions of these data based on the exploration boreholes 

shown in Fig. 8 are used for geostatistical modeling of GIP. However, GIP has not been 

used as a secondary variable in co-simulations simply because surface elevations are 

measured and provide more accurate data. In addition, surface elevation was found to be one 

of the most influential parameters on GGV production rates and their declines [10]. 

Nevertheless, GIP data still add value in analyzing performance of GGVs and thus they were 

used to compare cumulative productions from GGVs and to set approximate drainage areas 

for GGVs after co-simulations.
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4.1. Semivariogram modeling of surface elevation and of GIP attributes

For sequential Gaussian simulation and co-simulation techniques to be applicable, the data 

should follow a Gaussian (normal) distribution. Therefore, the surface elevation and 

attributes of coals (depth and thickness) were transformed to normal scores by targeting a 

Gaussian distribution with a mean of 0 and variance of 1 [20–21]. The semivariograms were 

modeled on the normal-score data, and later were transformed back to the original space 

during simulations by targeting their original distributions. The Stanford University 

Geostatistical Modeling Software (SGeMS) was used for semivariogram analyses and for 

geostatistical simulations [20]. The semivariograms were modeled according to the 

guidelines provided in [39] and by studying the directional experimental semivariograms of 

normal scores. Experimental semivariograms were searched at 0°, 45°, 90°, and 135° 

starting from north and changing towards the east direction of lag vectors. In addition, an 

omni-directional semivariogram was modeled. Simulations, though, were performed with 

the omni-directional semivariograms of each attribute since anisotropy was not detected.

Fig. 7 shows the experimental semivariogram for the normal-score data of Sewickley coal 

seam depth and surface elevation as examples of the attributes modeled in this study. The 

analytical semivariogram models of the variables for the three coal seams that were used in 

GIP calculations are summarized in Table 3.

4.2. Sequential Gaussian simulation of GIP

Sequential Gaussian simulation (SGSIM) is a semivariogram-based simulation technique 

that generates simulated results, or so-called realizations, of the attribute in question by 

extracting the spatial patterns from the input data and semivariograms. Realizations can be 

seen as numerical models of possible distributions of the simulated property in space. In 

practice, these realizations take the form of a finite number of simulated maps equally 

probable to represent the unknown true map. Therefore, each grid in each of these 

realizations, or simulated maps, generates a distribution of the particular attribute. These 

distributions can be used to analyze the data statistically for variances and to evaluate the 

uncertainty associated with various values in a probabilistic fashion. It should be mentioned 

that ordinary kriging and co-kriging could have been used instead of simulation for spatial 

modeling. However, kriging causes severe smoothing effect on the results and also 

simulation is more suited to evaluate uncertainty [38]. In addition, Heriawan and Koike [40] 

compared two spatial models of coal quality by ordinary kriging and sequential Gaussian 

simulation, and clarified the merits using the simulation.

In this work, 100 realizations for each attribute of interest for GIP calculations were 

generated. For verification of the statistical accuracy of these realizations, the results of 

sequential Gaussian simulations of modeled attributes (thickness and overburden depth) 

were compared with the original data before proceeding with calculations of GIP and the 

associated uncertainties. These comparisons required Q–Q plots of hard data (measured 

data) along with SGSIM realizations. Q–Q plots (not shown here but readers are referred to 

[38] for an example) gave acceptable linear trends between hard data and realizations, 

indicating that the probability distributions of these two datasets are almost the same, and 
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SGSIM produces representative simulated distributions of probability distributions of actual 

data.

After the representativeness of these realizations for the raw attribute data were checked 

using Q–Q plots, GIP computations were performed for each of the three coal seams, which 

later were summed to compute the GIP maps of the fractured zone. One hundred realizations 

of GIP of the fractured zone for the area shown in Fig. 1 were generated.

The simulation results distributed in each of the realizations can be used for statistical 

evaluations of uncertainty using the histograms. For instance, the values of GIP for the 

fractured zone can be calculated at 5%, 50%, and 95% quantiles (Q5, Q50, Q95). These 

quantiles represent the ranking of the estimated attribute, where each estimated value has the 

5th, 50th, and 95th place in ranking analyses. In other words, the estimated values of 5%, 

50%, and 95% have a probability to be lower than the actual unknown value. Among these, 

Q50 represent the median of the possible population distribution for the calculated variables.

The cell values within each of the 100 realizations and percentile analyses were conducted 

to extract the realizations that correspond to Q5, Q50, and Q95 of fractured zone GIP. The 

GIP results shows that cumulative GIP in this area ranges between 3550 MMscf (3.55 Bscf) 

and 4150 MMscf (4.15 Bscf). These values are important as they state that, assuming GGVs 

produce methane only from the GIP in the fractured zone, the cumulative production from 

all boreholes combined cannot exceed 4.15 Bscf.

Fig. 8 shows the histograms of cell values (5000 cells) of GIP for Q5, Q50, and Q95, whose 

basic statistics are given in Table 4. This figure and table show that the GIP values in 

realizations corresponding to Q5, Q50, and Q95 are distributed within a minimum and 

maximum range of ~0.24 MMscf/cell and ~1.5 MMscf/cell, respectively, with a mean of 

~0.75 MMscf/cell. These values correspond to ~0.34 MMscf/acre, ~2.05 MMscf/acre, and 

~1.1 MMscf/acre, as minimum, maximum, and mean, respectively. However, it is also 

noteworthy that the histograms given in Fig. 8 show bimodal distributions, which indicate 

the existence of two distinct zones of GIP within the study area. GIP maps corresponding to 

Q5, Q50, and Q95 (Fig. 9) show that the western portion of the study area has potentially 

more GIP in the fractured zone then the eastern portion. Therefore, methane control and 

ventilation requirements will be different in these two areas.

5. Selection of primary variables and co-simulations

5.1. Selection of primary variables

In this paper, the potential of geostatistics to model decline curve attributes of a limited 

number of GGVs is sought by utilizing the location of wells and by considering the 

correlation potential of DCA attributes with surface elevation of wells. For this purpose, 

surface elevation data shown in Fig. 4 are used as the secondary variable in co-simulations.

The next step was to identify which DCA parameters could be selected as primary variables 

of co-simulations. In order to determine these variables, a correlation analysis between all 

possible DCA parameters and surface elevation was conducted using the normal scores of 

all attributes. The results of this analysis are given in Table 5. In selecting the primary 
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variables based on the correlation coefficients, the objective was to select the meaningful 

primary variables that have reasonably high correlations with the secondary variable. 

Moreover, two variables having an absolute correlation coefficient larger than 0.9 were 

judged dependent upon each other. This excluded the variable RR that had a larger 

correlation coefficient with the surface elevation than the variables QFC and QP, for 

instance. Additional effort was also made to avoid selecting primary variables that will 

repeat themselves in co-simulations. Moreover, selected variables should have enabled 

derivation of others using their relations through exponential decline relations given in Eqs. 

(1) and (2). Therefore, methane rate at production start (QP), percent decline (PD), end of 

possible production period (END), and production rate at start of forecast period (QFC) 

were selected as primary variables to be simulated with surface elevation (ELEV).

5.2. Sequential Gaussian co-simulations of primary variables with secondary variables

Different implementations of sequential simulations in SGeMS can be used for different 

purposes [20,29]. For this work, sequential Gaussian co-simulation with Markov-model-1 

(MM1) was selected. The absence of need to generate cross-correlation, while still 

maintaining the ability to produce realistic results [29,41], is an advantage of this method in 

the face of especially limited data points.

Sequential Gaussian co-simulation allows for simulation of a Gaussian variable while 

accounting for the secondary information to which it correlates [20]. Due to the nature of the 

simulation method, the variables should either be Gaussian or should be transformed to 

normal scores. The latter was followed in the study since the variables were not Gaussian.

MM1 considers the following Markov-type screening hypothesis during simulations: the 

dependence of the secondary variable on the primary is limited to the co-located primary 

variable. The cross-covariance is then proportional to the auto-covariance of the primary 

variable [20], which can be shown as

where h is the distance vector, C12 is the cross covariance between the two variables, and 

C11 is the covariance of primary variable. Thus, solving the co-kriging algorithm with MM1 

requires the knowledge of correlation between primary and secondary variables, as well as 

the semivariogram(s) of the primary variable(s). These requirements, as implemented in the 

face of limited amount of data for primary variables, were addressed by determining the 

range of correlation coefficients instead of using a single value. For this purpose, a Monte 

Carlo (MC) routine using multi-normal correlation based on Cholesky decomposition was 

implemented. The routine generated 1000 normal-score data for each of the primary DCA 

variables and the surface elevation by using their normal-score means and standard 

deviations. This procedure, implemented for each of the four primary-secondary variable 

pairs selected, generated a range of correlation coefficients that were normally distributed 

around the 10-data value. These 1000 values were reduced to 100 by random sampling and 

were used for running 100 realizations by varying the correlation coefficient in each co-
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simulation run. The correlation coefficient distributions for each primary-secondary variable 

pair are given in Fig. 10.

Semivariogram of primary variable based on limited data locations was approximated by the 

semivariogram of the secondary variable in normal-score space as all attributes in normal-

score space have sills of 1, regardless of the attribute being modeled. Therefore, the sill of 

the semivariogram for surface elevation is the same as the sill of the “unknown” 

semivariogram of the primary variable. This is especially true if the primary and the 

secondary variables are correlated. This implies that the semivariogram ranges and nuggets 

must be quite similar too. Of course, it can be argued that correlation coefficients based on 

10 wells are in the order of ~0.7 and thus nugget and ranges may not be exactly the same. 

This argument is partly taken care of by generating a range of correlation coefficients 

around the mean that will reflect on results and is also supported by the influence of surface 

elevation on production and decline characteristics discussed in [10,34]. Thus, as 

continuation of the above approach approximating the parameters of the primary 

semivariogram, the same shape of the secondary semivariogram, which is given in Fig. 7B, 

was used as the primary semivariogram. As the last step in simulation methodology, the 

normal-score primary attributes generated from co-simulations were back-transformed into 

real-space values.

6. Results and discussion

6.1. Co-simulated realizations of primary variables using cell-based evaluation

Co-simulations using the MM1 approach were performed to generate 100 realizations for 

each of the primary variables. The realizations of DCA parameters co-simulated with 

surface elevation shown in Fig. 4 can be used in a variety of ways to improve the 

understanding of rate decline properties of GGVs drilled at different locations. One of the 

most useful applications of all 100 realizations from each of the parameters is to calculate 

local probability above certain thresholds. With this application, local probability at each 

cell location can be calculated using the threshold value and the local cumulative probability 

distribution from 100 values. The results are presented as probability maps. In this study, the 

median values of each of the co-simulated DCA parameters were selected as the threshold 

value for local probability calculations. The median values were 77.8%/year for PD, 787.8 

days for END, 0.106 MMscf/day for QFC, and 0.163 MMscf/day for QP. The maps that 

show the local probabilities for these four DCA parameters to have values above their 

medians are shown in Fig. 11A–D.

The local probability maps were generated based on 100 values in each of the 5000 cells 

and, comparing these with the surface elevation map given in Fig. 6, show general areas 

where GGVs perform above the set threshold values (medians). These figures show that the 

probability of percentage decline being larger than 77.8%/year is greater at high elevations 

(Fig. 11A) and that the GGVs drilled at or close to hilltops can have very high decline rates 

over time and may not produce for long enough periods to extract an incremental amount of 

methane. This is also confirmed with the probability map given in Fig. 11B, which indicates 

that hilltop wells have very little probability producing with extended periods of time 

(exceeding ~788 days). These maps show that only the GGVs drilled at the lowest 
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elevations have high probabilities of having slower decline rates and extended production 

lives.

Fig. 11C and D shows the probabilities of having methane production rates at certain stages 

of GGV production. For instance, Fig. 11C shows the local probabilities that GGVs will still 

produce with methane rates more than 0.106 MMscf/day at the start of the forecast period. 

This figure shows that the probabilities for this are higher only for GGVs drilled in the 

valleys. Fig. 11D shows the probabilities of GGVs producing with methane rates higher than 

0.163 MMscf/day at the very start of the production life. This figure shows that the 

probabilities of such rates can only be possible if the GGVs are located in the valleys; the 

probability decreases towards the hillsides and becomes almost zero at the hilltops.

The probability maps prove two important observations with regard to the decline properties 

of GGVs: (a) GGVs drilled at or close to hilltops have higher rates of decline and are shorter 

lived and (b) wells drilled at hilltops start producing methane at lower rates compared to 

their counterparts drilled in the valleys. They also have higher rates when the GGVs 

eventually enter the forecast period, which means that even though these GGVs may have 

rates sufficient to sustain production, they can cease production due to other problems that 

high overburden can create such as lower fracture permeabilities and larger strains on the 

wellbore that may promote casing failure. In fact, [34] showed that calculated hydraulic 

conductivities in GGV-11 to GGV-15 shown in Fig. 1 decreased at higher overburden 

depths as the longwall face was approaching.

6.2. Quantile estimates of co-simulated results

The histograms of co-simulation results for PD, END, QFC and QP were used to determine 

the realizations at Q5, median (Q50), and Q95 of simulated attributes using ranking 

analyses. Distribution of cell values of these realizations with corresponding quantiles are 

shown in Fig. 12A – D for co-simulated DCA variables.

Table 6 shows the summary statistics of the data given in Fig. 12. In this table, DCA 

parameters that correspond to Q50 values were shaded since Q50 will be used in further 

analyses of GGV performances in combination with GIP realizations. The results given in 

this table are based on analyses of 5000 cell values from realizations, but they generally are 

in accord with the values obtained from 10 GGVs and given in Table 1. Differences in some 

of the values—ranges and standard deviations in particular— compared to their counterparts 

given in Table 1 are due to quantile ranking, mostly because the co-simulated values are 

spread closer to normal distribution.

6.3. Integrating co-simulation results of DCA with decline functions for performance 
prediction

Fig. 13 shows the realizations that correspond to 50% quantile (Q50) for each of the co-

simulated parameters. The values in each cell in these DCA attribute maps can be 

considered as the values that a GGV will have if drilled at any given cell, with the provision 

that only some of these 5000 drill-location choices (cells) can actually be drilled. With this 

in mind, the maps in Fig. 13 show that in the majority of the region, especially where the 

surface elevations are high, the GGV would have very high decline rates (> 80%/year). Only 
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in the regions where there are valleys would the GGVs have decline rates in the 50–70%/

year range. In addition, these high decline rates would be associated with lower methane 

production rates at the start of GGV production. The values presented based on the Q50 

maps of DCA attributes in Fig. 13 are in agreement with the local probabilities calculated 

for each cell (Fig. 11) and the interpretation offered in Section 6.1.

The spatial DCA data given as maps not only can be used to generate synthetic decline 

curve analysis test data for selected locations but can also be used to predict performance of 

any GGV that can be drilled at any random location on the terrain by use of decline 

functions. As an example of this application, the virtual GGVs shown in Fig. 14 were 

created and located randomly at various locations on the surface elevation map to cover a 

range of surface elevations and locations on the terrain, such as valleys, hillsides and 

hilltops. By using the DCA maps from co-simulations as the decline parameters of these 

GGVs, and by using Eq. 2 as the expression for cumulative production in exponentially 

declining wells at any given time, realizations of cumulative methane productions were 

created. These calculations were performed by replacing FC (forecast start time) term in Eq. 

2 with desired times; 30, 60, 120, 180, and 240 days, in this case. Then, a ranking analysis 

was performed on the results to find the realizations that corresponded to various quantiles, 

using the same procedure described in Section 6.2 to find various quantiles of DCA 

simulations. To finish the prediction for cumulative methane productions, the data at the 

exact locations of the virtual GGVs were extracted. These data from Q50 realizations of 30, 

60, 90, 120, 180, and 240 days are given in Fig. 15.

Fig. 15 shows that the GGVs had differing production performances based on the DCA data 

that these GGVs acquired at their locations. The cumulative production data predicted for 

various production times showed that the GGVs located at the highest elevations, such as 

hilltops (E, F, G, I, K), had generally the lowest amount of cumulative methane production. 

On the other hand, the GGVs located at the lowest elevations (C, D, H, J, L), such as valleys 

and lower edge of the hills, had the highest cumulative methane productions. The difference 

in cumulative production between best and worst performing GGVs at the end of 240 days 

was about 15 MMscf of methane.

6.4. Integrating performance prediction based on DCA maps with GIP results to estimate 
drainage area

GGVs, as with other boreholes in any reservoir, should be drilled with a well-planning 

protocol to determine where and how many wellbores should be drilled in a given region by 

considering surface and reservoir conditions. This includes paying attention to any possible 

interference between GGVs. The results presented in the previous section can be integrated 

with GIP maps (Fig. 9) to estimate possible drainage radii of GGVs in the fractured zone 

and potential for interference due to overlapping drainage zones.

In order to demonstrate the drainage radius estimation for GGVs, the same virtual GGVs 

shown in Fig. 14 and their performance results given in Fig. 15 were used. These results 

were also combined with the GIP maps given in Fig. 9. The GIP amounts at the exact same 

cells as the virtual GGVs are shown in Fig. 16 for Q5, Q50, and Q95. This figure shows that 

GIP is lowest at A, C, and D locations and the amount is ~0.4 MMscf/cell. GIP is highest at 

Karacan and Olea Page 12

Int J Rock Mech Min Sci (1997). Author manuscript; available in PMC 2015 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B, E, F, I, K, and L. These are primarily the locations towards the west and south of the 

model area. GIP amount in these locations is between 0.8 and 1.2 MMscf/cell range.

Estimation of the drainage radii of GGVs starts with evaluating cumulative methane 

production of GGVs at any given time. For this purpose, cumulative production data for 30 

days and 240 days at 50% quantile (Q50) given in Fig. 15 were used, as well as the Q50 

values of the GIP at given locations from Fig. 16. Knowing the size of each cell, the 

cumulative production amount, and the GIP corresponding to each location, the drainage 

radius of each GGV can be calculated. However, this calculation is based on the assumption 

that all GIP will be produced from the GGV and surrounding cells, i.e., recovery efficiency 

is 100%. Based on this procedure, the estimated drainage radii of each GGV are given in 

Fig. 17 as a function of surface elevation at virtual GGV locations. This figure shows that 

drainage radii can change between 200 and 400 ft at only 30 days of production of GGVs, 

whereas they increase to values between 500 ft and 1000 ft, depending on the location and 

the GIP values, after 240 days of production. If different methane extraction efficiency is 

taken into account, the estimated radii will change accordingly. Also, it is clearly seen from 

this plot that drainage radii decrease with increase in surface elevation of the GGV location. 

This is in agreement with the impact of surface elevation on DCA parameters discussed 

earlier in this paper and in [10].

Radii values estimated in this section compare favorably with the ones predicted from 

pressure transient tests. Karacan [7] predicted radii of investigations for operating GGVs as 

578 and 2818 ft, depending on the locations, by use of pressure transient analyses of multi-

rate drawdown test techniques. The results given in this paper also compare, within the order 

of magnitude, with the radius of investigation (~4000 ft) of a well in a completely different 

setting and known to produce from a bedding-plane separation [9] in a bounded gob 

reservoir.

The differences in production behaviors and rate transient (decline) behaviors of gob gas 

ventholes, along with their radii of investigations, can be attributed to various factors as 

discussed previously. Surface elevation of drill locations can have significant correlations 

with rate transient behaviors of these wells. Analyses reveal that the better performing wells 

are usually at lower elevations (and lower overburden depths) compared to poorly 

performing ones. Therefore, locations of the GGVs should be selected with care. This can be 

attributed to higher fracture permeability and shorter casing length for the exhauster to pull 

the methane, as opposed to tighter fractures below hilltops and longer casings. Therefore, if 

the GGVs have to be drilled at hilltops, it is advisable to drill them at closer spacings due to 

the smaller radius of drainage that was proven in this study and in earlier studies. The 

drainage radii can also be estimated using DCA and GIP predictions, which will give better 

design criteria when considered together. Along these lines, geostatistical simulation and co-

simulation techniques can be used as advanced tools as part of the planning and to assess 

uncertainty in making the decisions related to drilling locations and prediction of rate 

declines of the GGVs.

Here we have simulated all four primary variables by correlating them to the same 

secondary variable. A challenge for the future that should yield additional improvements 
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would be the simultaneous simulation of all five attributes. In addition, a rock fracture 

network model of gob and geostatistical implementation of fractures to compare and 

improve accuracy of the findings of simulation of DCA parameters will be highly valuable. 

Such models can show the paths of fluid flow through rock fractures [42,43] and improve 

the understanding on DCA parameters.

7. Summary and conclusions

In this paper, geostatistical analysis was pursued using sequential Gaussian co-simulation to 

characterize decline curve analyses (DCA) of gob gas ventholes in combination with GIP in 

fractured zone and surface elevation. Surface elevation was selected as the secondary 

variable, while various attributes of DCA were treated as primary variables. GIP was also 

simulated with sequential Gaussian technique, used in conjunction with decline curve results 

to determine the drainage radii and production quantities.

The results obtained from this study evaluated important attributes of methane capture from 

mining environments, such as gob gas venthole production rates, decline rates, production 

ending durations, and cumulative gas productions. Employing sequential Gaussian 

simulation and co-simulation enabled not only the estimation of important parameters of 

DCA that have correlations with surface elevations but also the assessment of their 

uncertainty and values at certain quantiles of statistical evaluation.

This study showed that GGVs can have very high decline rates for a majority of the modeled 

mining district. In addition, these high decline rates were associated with lower production 

rates at the start of production and consequently less cumulative production. Geostatistical 

simulation results were used to calculate drainage radii of GGVs using GIP realizations. 

This work showed that the calculated drainage radii were close to ones predicted by pressure 

transient tests. Therefore, geostatistical analyses along with co-simulations of DCA and GIP 

and surface elevation data could be used to estimate the rate transient parameters and 

drainage radii of the wellbores, thus aiding designers in both placement and spacing of the 

GGVs.

Although the general belief in the coal region of the Northern Appalachian Basin is that gas 

production is improved by drilling GGVs at the margins of the tailgate in the longwall panel, 

this study showed that surface elevation might be an important consideration as well. 

Therefore, it is important to select the locations of the GGVs with care. In general, wells 

located at lower elevations, i.e., at the bottom of valleys, tended to perform better in terms of 

their rate declines compared to those at higher elevations. Thus, it is advisable to drill GGVs 

with closer spacing at hilltops due to their smaller radii of investigations.

In conclusion, geostatistical simulation and co-simulation techniques can be used as 

advanced tools as part of the planning process and to assess uncertainty in making decisions 

related to drilling locations and prediction of rate declines of the GGVs.

Conversion table (English to SI units)

1 ft = 0.3048 m
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1 ft2 = 22.957 × 10−6 acre

1 MMscf = 28316 m3

1 scfm = 0.0004719 m3/s

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic representation of stratigraphy and completion of the gob gas ventholes (GGVs), 

as well as panels and locations of the GGVs, in the study area. The dimensions of the area 

shown in this figure are 8624 ft in the y-direction and 17,325 ft in the x-direction. (For 

interpretation of the references to color in this figure caption, the reader is referred to the 

web version of this article.)

Karacan and Olea Page 18

Int J Rock Mech Min Sci (1997). Author manuscript; available in PMC 2015 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Traditional DCS with exponential decline curve (red line) of methane production data (green 

circles) from GGV-1 (Fig. 1). (For interpretation of the references to color in this figure 

caption, the reader is referred to the web version of this article.)
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Fig. 3. 
Schematic representation of rate parameters and important times in exponential decline 

analysis. In this plot, QP, initial production rate; TP, production start time; FC, forecast start 

time; END, end of the potential production life of the well; PD, percentage decline (constant 

decline rate); QFC, rate at forecast start; CUM.P, cumulative production till forecast start; 

RR, recoverable reserves; EUR, expected ultimate recovery; Qab, abandonment rate.
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Fig. 4. 
Surface elevation map at 175 ft × 176 ft resolution after up scaling the high resolution map 

at 30 ft × 30 ft resolution.
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Fig. 5. 
Histograms of the surface elevation data shown in Fig. 4 and its normal score distribution.
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Fig. 6. 
Spatial locations of the exploration boreholes drilled over the area shown in Fig. 1.
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Fig. 7. 
Omni-directional experimental semivariograms of normal scores of Sewickley seam depth 

(A) and surface elevation (B) (red crosses), and the spherical analytical semivariograms 

modeling them (black line). (For interpretation of the references to color in this figure 

caption, the reader is referred to the web version of this article.)
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Fig. 8. 
Distributions of fractured zone GIP in realizations corresponding to quantiles Q5, Q50 and 

Q95 (Real stands for realization in the legend).

Karacan and Olea Page 25

Int J Rock Mech Min Sci (1997). Author manuscript; available in PMC 2015 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Q5, Q50, and Q95 realizations of GIP in the fractured zone of the study area shown in Fig. 

1. The red line is the 1100-ft contour of surface elevation to show the edge of hills. (For 

interpretation of the references to color in this figure caption, the reader is referred to the 

web version of this article.)
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Fig. 10. 
Range of correlation coefficients generated for each of the primary-secondary variable pairs 

to be used in co-simulations.
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Fig. 11. 
Maps that show the local probabilities for DCA parameters for values above their medians. 

The red line is the 1100-ft surface elevation contour. (For interpretation of the references to 

color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 12. 
Histograms of cell values in realizations corresponding to Q5, Q50, and Q95 of DCA 

parameters (real stands for realization in the legends).
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Fig. 13. 
Q50 maps of percent decline (PD), production end time (END), methane rate at forecast 

start (QFC), and methane rate at production start (QP). The red line is the 1100-ft contour of 

surface elevation. (For interpretation of the references to color in this figure caption, the 

reader is referred to the web version of this article.)
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Fig. 14. 
Virtual GGV locations to predict their performances.
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Fig. 15. 
Cumulative production data (Q50) calculated using DCA maps and Eq. (2) for 30, 60, 90, 

120, 180, and 240 days at the virtual GGV locations shown in Fig. 14.
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Fig. 16. 
GIP amounts determined from Q5, Q50 and Q95 realizations for GGV locations shown in 

Fig. 14.
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Fig. 17. 
Drainage radius predictions as a function surface elevation using DCA and GIP results for 

GGVs drilled at virtual sample locations.
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Table 2

Univariate statistical parameters of depth and thickness encountered by the exploration boreholes for 

Sewickley, Uniontown and Waynesburg coal seams.

Depth (ft) Sewickley Uniontown Waynesburg

# of data 62 30 63

Mean 580.73 405.97 346.14

St. dev. 130.62 139.44 127.47

Variance 17,061.35 19,443.67 16,247.78

Minimum 341.73 192.70 103.60

Maximum 803.79 641.00 569.15

Thickness (ft)

# of data 62 30 63

Mean 3.50 0.27 5.37

St. Dev. 1.994 0.088 0.585

Variance 3.979 0.008 0.343

Minimum 0.33 0.10 3.60

Maximum 6.90 0.50 6.99
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Table 3

Summary of parameters that describe analytical semivariograms for depth and thickness attributes of 

Sewickley, Uniontown and Waynesburg coal seams, which were used to calculate GIP, and surface elevation. 

All semivariograms were analyzed using normal-score data and described with one-nested structure (model).

Depth (ft) Sewickley (SWC) Uniontown coal (UNC) Waynesburg (WBC) Exploration boreholes

Model Spherical Exponential Exponential

Nugget 0.1 0.1 0.1

Sill 0.8 0.7 0.8

Maximum range 3528 5400 4080

Medium range 3384 5100 4020

Minimum range 3168 4950 3780

Thickness (ft) Sewickley (SWC) Uniontown coal (UNC) Waynesburg (WBC) Surface elevation (ft)

Model Spherical Gaussian Spherical Spherical

Nugget 0.1 0.07 0.3 0.1

Sill 0.5 0.95 0.6 0.9

Maximum range 5580 3850 3300 3872

Medium range 5580 3700 3150 3630

Minimum range 5580 3500 3075 3509
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